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THE NORWEGIAN OPEN AI LAB

‣ To enable both basic and applied research
‣ To support a wide variety of research areas
‣ To perform research at highest international 

level
‣ To foster cross-disciplinary collaboration

https://www.ntnu.edu/ailab

From the 
opening of 
the AI Lab 
at NTNU, 
Trondheim.
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RESEARCH AND APPLICATION OVERVIEW: 
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Artificial Intelligence (AI): 
When, What, How, and Why
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Successes of Artificial Intelligence (AI) 

• May 1997: Deep Blue was the first computer system to defeat a reigning world 
champion. It beat Kasparov 3½–2½ under standard chess tournament time 
controls.

• October 2005: Stanford Racing Team wins the DARPA Grand Challenge, a 212 km 
(132 mi) off-road course, near the California/Nevada state line.

• April 2006: Google introduces Translate, a services that translates text from one 
language into another. United Nations and European Parliament transcripts 
were used to gather linguistic data.

• February 2011:  IBM’s Watson computer system wins first place and $1 million in 
Jeopardy! against former winners Brad Rutter and Ken Jennings. 

• October 2011: Apple introduced the iPhone 4S with Siri, an intelligent assistant 
with a voice recognition user interface. 

• March 2016:  AlphaGo, using Google’s DeepMind AI, won its third Go match 
against Lee Sedol, one of Go’s most dominant players. 

• May 2016: Google Assistant, a virtual personal assistant, engages users in two-
way conversations via voice and keyboard.  It can search the Internet, schedule 
events and alarms, and show information from the user's Google account. 
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Artificial Intelligence: Rational Agent
For each possible percept sequence, a rational agent selects an action that is 
expected to maximize its performance measure given the percept sequence and 
the agent’s knowledge [Russell and Norvig, 2009].  
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Note: Artificial 
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Machine Learning: From the Fringe to the 
Center of the AI Universe

Pat Langley’s 
Editorial in the 
“Machine Learning” 
journal’s  Inaugural 
Issue, 1986. 
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• Improvements in models, algorithms, and software: 
– Focus of my research and that of others in the AI Lab

• Improvements in hardware - computers are good at:
– Fast computing of millions of simple operations
– Huge memories: Cache, RAM, disk, ... 

• Availability of large and interesting data sets: 
– Improvements in sensor technologies (including cameras, IoT, Internet, and Web)
– Improvements in distribution technologies (including Internet and Web)

• No “real intelligence” needed:  
– We can start doing interesting machine learning work before human and animal 

intelligence is fully understood 

Summary: Current machine learning methods take advantage of what computers 
are good at as well as the large data sets currently available.  

Why is Machine Learning Currently 
Achieving Success?  
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Which Machine Learning Algorithm to Use?

• Evolutionaries: use methods from evolution and genetics - evolutionary 
algorithms, genetic algorithms, and genetic programming [Darwin, 1859] 
[Holland, 1975] [Goldberg, 1989]. 

• Bayesians: learning as inference using - Bayes rule, Bayesian networks,  
and probabilistic graphical models [Duda & Hart, 1973] [Pearl, 1988] 
[Jelinek, 1997][Darwiche, 2009] [Koller & Friedman, 2009] [Blake, 2011]. 

• Connectionists: reverse engineer the brain – from neural networks to 
deep learning [Werbos, 1974] [Rumelhart & McClelland, 1986] [Bengio, 
2009] [Goodfellow et al., 2016].

• Symbolists: intelligence as symbol manipulation[Newell & Simon, 1976] 
[Michalski et al., 1983] [Breiman et al., 1984] [Quinlan, 1992]. 

• Analogizers:  learning by recognizing similarities [Boser et al., 1992] 
[Kolodner, 1993] [Cristianini & Shawe-Taylor, 2000].  

“Tribes” in machine  learning (and AI?) [Domingos, 2015]: 
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Which  algorithm(s) is (are) “best” depends on your project – data, goal, skills, 
resources, and so forth. 
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Tribe: Connectionists
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Connectionists: Artificial Neural 
Networks (ANNs)

• Bio-inspiration: 
information 
processing in 
biological systems 
(brains).

• Mathematical 
abstraction of the 
biological processes. Slide courtesy of: Andrew L Nelson
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Generations of ANNs

• 1st generation (1958 – 1969): 
– Rosenblatt, F.,  The Perceptron: A Probabilistic Model for Information Storage 

and Organization in the Brain, Psychological review, 1958.
– M. Minsky and S. A. Papert. Perceptrons, 1969. 
– Impossibility of representing linearly inseparable functions (e.g., XOR). 

• 2nd generation (1980 – 2000): 
– Rumelhart, D. E., & McClelland, J. L., & the PDP Research Group, Parallel 

distributed processing: Explorations in the microstructure of cognition. volume 
I & II.

– Not as feasible as other ML models (e.g., graphical models, SVM, boosting). 
• 3rd generation (2006 – present): 

– Hinton, G. E. and Salakhutdinov, Reducing the dimensionality of data with 
neural networks, Science, 2006.

– Lee, R. Grosse, R. Ranganath, and A.Y. Ng, Convolutional deep belief networks 
for scalable unsupervised learning of hierarchical representations, ICML 2009. 

– Application success of autoencoders, RBMs, CNNs, RNNs, … 
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Deep Neural Networks (DNNs): 
The 3rd Generation of ANNs

• Deep neural networks have more layers than ANNs in previous 
generations
– Typically 4-7 layers

• DNNs can take advantage of big data: With more data, DNN 
performance often improves

• GPUs accelerate the DNN network training process
– Computational challenge of training 

• New or “new” techniques:
– Pre-training – find good locally optimal by getting good initial value
– Dropout – prevent over-fitting
– Momentum – find better local optima
– Convolutional neural networks (CNNs) - connectivity pattern similar to 

the cortex of animals 
– … 
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Convolutional Neural Networks (CNNs) for 
Human Activity Recognition (HAR)
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CNN

M. Zeng, L. T. Nguyen, B. Yu, O. J. Mengshoel, J. Zhu, P. Wu, and J. Zhang. Convolutional Neural Networks for human 
activity recognition using mobile sensors, Proc. 6th International Conference on Mobile Computing, Applications and 
Services, Austin, TX, 2014, pp. 197-205.
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Experimental Result, CNNs: 3 HAR Datasets

1. Opportunity: activities in the kitchen
- 10 activities (20 repetitions): open/close the fridge, drink while standing, 

clean the table, …
- Body-worn sensors (19 in total, we used the right arm sensor) 
- 30,000+ instances, 64 dimension, 64Hz

2. Skoda: car assembly-line
- 10 activities
- Use 3D acceleration on the right arm
- 20,000+ instances, 64 dimension, 96Hz

3. ActiTracker: primitive activities (walking, jogging, …)
- 6 daily activities: jogging, walking, ascending stairs, …
- Recorded from 36 users
- 15,000+ instances, 64 dimension, 60Hz

16
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Experimental Results, CNNs versus 
Baselines: Accuracy for 3 HAR Datasets 

The CNN-based method, especially the CNN with partial weight sharing, 
performs better than other classifiers.  
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Pros and Cons of Connectionism

• Pros
– Recent strong results in visual computing, speech recognition, natural 

language processing, human activity recognition,  …  
– Extracts good features for classifiers – less need for feature engineering
– Makes good use of big data

• Cons
– Big data is typically needed for high-accuracy learning
– The training time is typically long, powerful computing is needed
– Interpretability and explainability are limited – the ANN is a “black box”
– Creating a good architecture can be difficult

18
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Rational Agent Architecture: 
Human in the Loop
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H
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The rational AI agent [Russell and Norvig, 2009] typically operates as a decision 
support tool for humans.  Humans are involved both in preparing the AI agent’s 
input and in evaluating the AI agent’s output. 
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(2) Decision (action or 
advice) and evaluation 
issues:
• The “garbage in, garbage 

out” rule still holds, likely 
more so than before

• Probabilistic (as opposed to 
deterministic) results – need 
for human in the loop and 
analytical thinking 

• Less clear specifications and 
requirements due to learning 
component – most 
prominent in unsupervised 
machine learning 

• Black box machine learning 
models are extremely hard 
to debug and fix when they 
fail

Preprocessing of Raw Data and Evaluation 
of Raw Decisions: Some Issues

(1) Data and preprocessing questions: 
• Are the data representative or unbiased? 

– Recall iid assumption from statistics

• Is it Big Data?  The 5 Vs of Big Data: 
– Veracity - Is the data noisy? How “clean” data? 
– Volume
– Velocity 
– Variety 
– Value 

• Are data skewed? 
– Rare or corner cases can be difficult

• Is it Small Data? 
– Learning from small, high-dimensional data is hard 

• Are data complete? 
• Is there data drift?
• Are there privacy or confidentiality concerns? 
• Who owns the data? 



Norwegian University of Science and Technology 22

Preprocessing (of Raw Data) and 
Evaluation (of Raw Decisions)
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• Ideally there should be: 
– A clear idea of what the AI agent is trying to achieve
– A strong connection between AI agent decisions and the 

goal(s) of an organization (business)
• However, it can be difficult to: 

– Quantify the ultimate business goal(s)
• We can try to use a surrogate in such cases
• Need to decide the surrogate through careful analysis
• In machine learning, the surrogate is often the ML model: 

– Created from a training data set + prior knowledge 
– Evaluated on a testing data set

• Here: focus on classifier as the ML model
– Guarantee that the decisions of the (learned) AI agent 

meet the goals - if they can be defined
• Using an AI agent in a decision support role often makes sense

24

Evaluation of AI Agent Decisions
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Training set: 
with labels

Test set: hide 
labels

Machine 
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• Focus on classifiers
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accuracy
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Evaluation Overview
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Confusion Matrix for Binary Classification
• Assumption: binary (0/1, Yes/No, Positive/Negative) classification 
• Positives and negatives - in machine learning terminology: 

– Negatives are the uninteresting outcomes 
– Positives are the outcomes of interest (sometimes few)

• Confusion Matrix :
– An n x n matrix for a classification problem with n classes
– For binary classification: 2 x 2 confusion matrix
– Main diagonal (green) contains the correct outputs of the classifier

False positive 

True positive 

True negative 

False negativePositive (1)

Negative (0)

Negative (0)Positive (1)

Predicted class

Actual 
class

Comes from 
binary 

classifier 

Comes from test data 
or “real world”
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Goal: (1) minimize FPs and FNs while maximizing TPs and TNs.  
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• Define (based on the confusion matrix): 
– TPs: Number of true positives 
– TNs: Number of true negatives 
– FPs: Number of false positives 
– FNs: Number of false negatives 

• Metrics: 
– Accuracy a - proportion of correct decisions
– Error e - proportion of incorrect decisions

• A typical goal of machine learning is to maximize 
accuracy a and minimize error rate e

ea FNsFPsTNsTPs
TNsTPs −== +++
+ 1

27

Evaluation Metrics: Accuracy and Error
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• Metadata: Information about data set and its attributes
• Statistics: Mean, std. dev., outliers, clusters, correlation,… 
• Missing values and data cleansing
• Normalization: satisfy statistical and/or visualization constraints
• Continuous versus discrete: 

– Segmentation and discretization: continuous to discrete
– Nominal to ordinal mapping: discrete to continuous

• Sampling and sub-setting
• Dimension reduction: reduce to smaller number of dimensions
• Aggregation and summarization
• Smoothing and filtering: signal processing techniques
• …

If data preprocessing is performed, it is often important to (1) clearly indicate so 
and (2) provide drill-down capability to the raw data. 

29

Data Preprocessing
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Preprocessing

From Raw Data to Training Data
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• Scenarios for features: 
– Many, independent, predictive features: Easy learning
– Few, dependent, non-predictive features: Hard learning

• Applied machine learning project: 
– Much (most?) time might be spent on feature engineering

• Feature engineering is typically application-specific:  
– Feature construction is often semi-automatic or manual
– Approaches to features selection: 

• Filter: First feature selection, then machine learning 
• Wrapper: Iterate between feature selection and machine learning 

• Holy grail of ML: 
– Automated construction of features
– Today: 

• Traditional ML: Generate (feature construction) and test (feature selection) 
• Deep ML: Progress has and is being made on feature construction

31

Feature Engineering
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• Accuracy, and closely related metrics, are good starting points for 
evaluation of ML decisions

• But: is accuracy sufficient to evaluate a model?
• In problems where data for one class is rare (including not observed at 

all), using only accuracy can give poor results:
– E.g.: credit card transactions

• 100 transactions: 98 legitimate, 2 fraudulent (actual)
• Classifier classifies all transactions as legitimate (predicted)
• Accuracy a = 98/100 = 98%

– E.g.: diagnosis of infants for cerebral palsy (CP)
• 1000 live births: 2 positive, 998 negative1 (actual)

• Classifier classifies all births as negative (predicted)

• Accuracy a = 998/1000 = 99.8%
– Are these good classifiers? 

32

1“After validation, 1784 children born 1996–2007 in Norway were confirmed to have CP, with a corrected prevalence of 
2.5 (95% CI: 2.4–2.7) per 1000 live births.” S. Hollung, G. Andersen, R. Wiik, I. Bakken, and T. Vik. What is the prevalence 
of cerebral palsy in Norway? Developmental Medicine & Child Neurology, Volume 57, Issue S5, October 2015. 

Accuracy and Unbalanced Classes
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Concluding Remarks
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• Question: Can artificial intelligence be trusted?
• Answer: Yes and no.
• Rational: 

– Artificial intelligence and machine is different from traditional computer science (for 
example sorting)

– There are right and wrong ways to sort numbers, and a programmer can write a 
provably correct sorting program 

– In contrast, machine learning is typically used when no obvious program can easily 
be written – the program is learned from data

– A further complications comes with machine learning – outputs (advice or actions) 
are typically uncertain 

• “Doing machine learning means to always say I’m sorry” (Prof. D. Wilkins)

– Trust in AI Agents needs to be built, using verification and validation methods,  
similar to other engineering artifacts (aerospace vehicles, buildings, cars, ships, …)

• Thought as your plane takes off: “Did anyone prove (mathematically) that it will fly?” (Prof. 
D. Goldberg)

In Conclusion
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ANY COMMENTS OR QUESTIONS?
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